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We propose an archetypal system to investigate transitions from smooth to discontinuous dynamics. In the
smooth regime, the system bears significant similarities to the Duffing oscillator, exhibiting the standard
dynamics governed by the hyperbolic structure associated with the stationary state of the double well. At the
discontinuous limit, however, there is a substantial departure in the dynamics from the standard one. In
particular, the velocity flow suffers a jump in crossing from one well to another, caused by the loss of local
hyperbolicity due to the collapse of the stable and unstable manifolds of the stationary state. In the presence of
damping and external excitation, the system has coexisting attractors and also a chaotic saddle which becomes
a chaotic attractor when a smoothness parameter drops to zero. This attractor can bifurcate to a high-period
periodic attractor or a chaotic sea with islands of quasiperiodic attractors depending on the strength of
damping.
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I. INTRODUCTION

This study is motivated by a growing recent interest in
nonsmooth dynamics where various physical systems have
been studied. Examples include problems from mechanical
and civil engineering �1,2�, electronics �3,4�, control �5,6�,
computer graphics �7–9�, biology �10,11�, and others. Al-
though some theoretical foundations have been laid in the
work by Filippov �12�, Feigin �13�, Kunze �14�, Peterka �15�,
Shaw and Holmes �16�, and Nordmark �17�, there is a large
disparity between development and understanding of smooth
and discontinuous �nonsmooth� systems.

An archetypal oscillator whose nonlinearity can be
smooth or discontinuous depending on the value of the
smoothness parameter � is proposed and studied. As the con-
sidered oscillator has properties of both a smooth and a dis-
continuous system �at the limit�, potentially a wealth of
knowledge can be drawn from the well-developed theory of
continuous dynamics. Physically �as shown in Fig. 1�a�� this
oscillator is similar to a snapthrough truss system. It com-
prises a mass m linked by a pair of inclined elastic springs
which are capable of resisting both tension and compression;
each spring of stiffness k is pinned to a rigid support. This
model is inspired by the elastic arch described by Thompson
and Hunt in �18� �see Fig. 1�b��. Although the springs them-
selves provide linear restoring resistance, the resulting verti-
cal force on the mass is strongly nonlinear because of
changes to the geometric configuration.

The equation of motion can be written as

mẌ + 2kX�1 −
L

�X2 + l2� = 0, �1�

where L is the equilibrium length, X is the mass displace-
ment and l is the half distance between the rigid supports.

Now suppose system �1� is perturbed by a viscous damp-
ing and an external harmonic excitation of amplitude F0 and
frequency �. This leads to the following system:

mẌ + �Ẋ + 2kX�1 −
L

�X2 + l2� = F0 cos �t . �2�

System �1� can be made dimensionless by letting �0
2=2k /m,

x=X /L, and �= l /L�0,

ẍ + �0
2x�1 −

1
�x2 + �2� = 0. �3�

The smoothness parameter � not only defines the geom-
etry of the oscillator �Fig. 1�a�� but also has physical mean-
ing. For ��1 the system represents a pretensioned discrete
elastic string, while if �=0, the model corresponds to an
oscillating mass supported by two parallel vertical springs.

Again the system �2� can be written in a dimensionless
form by letting �=�0t, f0=F0 /2kL, 	=� /2m�0, and �
=� /�0,

x� + 2	x� + x�1 −
1

�x2 + �2� = f0 cos �� , �4�

where the prime denotes differentiation with respect to �.
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FIG. 1. �a� The dynamical model in the form of a nonlinear
oscillator, where a mass is supported by a pair of springs pinned to
rigid supports and �b� a simple elastic arch.
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The nonlinear restoring force F�x�=−�0
2x�1−1/�x2+�2�

is plotted for �0=1 in Fig. 2�a� for different values of pa-
rameter �. The solid line represents the discontinuous case
�=0, the dotted, the dash-dotted, and the dashed lines mark
the smooth cases, for �=0.01, 0.5, and 0.75, respectively.

II. DISCONTINUOUS UNPERTURBED CASE

When �=0 system �3� can be written in the following
form:

ẍ + �0
2�x − sgn�x�� = 0. �5�

It is worth reiterating here that the discontinuous dynamics is
obtained by decreasing the smoothness parameter � to 0.

To examine the influence of parameter � on the dynamics
of �3� we construct the bifurcation diagram, depicted in Fig.
2�b�. The system undergoes a supercritical pitchfork bifurca-
tion at �=1 where the stable branch x=0 bifurcates into two
stable branches at x= ±�1−�2. The stationary x=0 state is
now unstable, exhibiting the standard hyperbolic structure.
The Hamiltonian for system �3� can be written as

H�x,y� =
1

2
y2 +

1

2
�0

2x2 − �0
2�x2 + �2 + �0

2� , �6�

where ẋ=y. With the help of the Hamiltonian function �6�,
the trajectories can be classified and analyzed. For both con-
tinuous and discontinuous cases, the phase portraits of sys-
tems �3� and �5� are plotted for different values of the Hamil-

tonian H�x ,y�=E. For instance, for the smooth nonlinearity,
�=0.5, the dynamic behavior of the double well is similar to
that of the Duffing oscillator �19�, shown in Fig. 3�a�. For
�=0, the behavior is singular, as shown in Fig. 3�b�: the
orbits for E�0 are comprised of two large segments of
circles with their centers located at �−1,0� and �1,0� con-
nected at x=0. The case of E
0 is represented by two fami-
lies of circles.

It is most interesting that the orbit of the discontinuous
system �5� for E=0 is made up of two circles centered at
�±1,0� connecting at the singular point �0,0�, which form
special singular homocliniclike orbits. The structure around
the point indicates a saddlelike behavior. The hyperbolicity
at origin �0,0� is lost due to the tangency of the stable and
unstable eigendirections. This isolated singularity has neither
eigenvalue nor eigenvector. The pair of circles excluding the
point �0,0� are not the manifolds of the singularity, but the
flow along these circles approaches the point as x→0, and it
will be trapped by the singularity. The solution of the special
homoclinic like orbits can be formulated as

� = ��x±�t�,y±�t��,t � �−
�

�0
,

�

�0
�	 � 
�0,0�� , �7�

where (x±�t� ,y±�t�)= �±1±cos �0t , sin �0t�.

III. TRANSITION FROM SMOOTH TO DISCONTINUOUS
DYNAMICS

Numerical simulations have been carried out for system
�4�, assuming f0=0.8, 	=0.01�2, and �=0.75�2. Figure 4
shows bifurcation diagrams constructed for x sampled stro-
boscopically at phase zero versus control parameter � as �
decreases from 1 to 0 �Fig. 4�a�� and � increases from 0 to
0.3 and from 0.5 to 1 and decreases from 0.5 to 0.3 �Fig.
4�b��. The system has coexisting periodic attractors and a
strange chaotic attractor for ��0. However, for �=0 the
system exhibits chaotic and periodic solutions with unusually
high periods. These behaviors can be controlled by the
strength of the damping. The main feature of these attractors
is their topological similarity since they are associated with
the hyperbolic stationary state. This similarity also holds for
��0. The chaotic attractor can become a chaotic sea with
islands representing quasiperiodic behavior for �=0 and
	=0.

Figure 4�a� also shows the coexisting periodic solution of
periods 1, 3, 5, and 7 at �=1 �orbits are shown in Fig. 5�a��

FIG. 2. �a� Nonlinear restoring force F�x�; solid line marks the
discontinuous case for �=0; dotted, dash-dotted, and dashed curves
are the smooth cases for �=0.1, 0.5, and 0.75, respectively. �b�
Bifurcation diagram of system �3�.

FIG. 3. Phase portraits: �a� smooth case for �=0.5 and �b�
discontinuous case for �=0.
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and their bifurcations under decreasing �. Other coexisting
periodic solutions are found for �� �0,0.1�, as shown in
Figs. 4�a� and 4�b�. These two coexisting period-2 solutions
are symmetrical and the orbits for �=0.05 are presented in
Fig. 5�b�. For �� �0.41,0.52� a chaotic attractor coexists
with two period-4 solutions and the corresponding trajecto-
ries and the chaotic attractor are shown in Figs. 5�c� and
5�d�, respectively.

In addition to the coexistence of different attractors, the
system exhibits chaotic transients throughout. This behavior
can be characterized by chaotic saddles; see �20–22�. The
transient and the final periodic attractor are shown in Figs.
6�b� and 6�c� for �=0.01 and 0.001, respectively. The set of
Poincaré maps shown in Fig. 6 for �=0.1,0.01,0.001, and 0
shows the topological similarity now associated with the dis-
continuity at the origin. The coexisting period-2 solutions
persist for �=0 and the chaotic saddle becomes a chaotic
attractor for �=0 as shown in Fig. 6�d�. The behavior of this
chaotic attractor can be controlled by the damping ratio 	.
Other attractors are presented in Fig. 7�a� for 	=0.005, Fig.
7�b� for 	=0.0125, and Fig. 7�c� for 	=0.025. A high-period
periodic attractor is shown in Fig. 7�d� having period 23 for
	=0.028. For both �=0 and 	=0, a chaotic sea and quasi-
periodic behavior can also be inferred via a semi-analytical
method, see �23�. Figure 8 shows the chaotic sea together

with a pair of quasi-period-2 solutions, a pair of quasi-
period-5 solutions, the quasi-period-9 and the quasi-
period-11 solutions, respectively.

The largest Lyapunov exponents for all the chaotic attrac-
tors presented in this paper have been calculated using the
chaos synchronization method �see �24� for instance�, as
shown in the captions for the corresponding figures.

FIG. 4. �Color online� Bifurcation diagrams for x versus � con-
structed. �a� Decreasing from �=1 and following the attractors
starting with period 1 �black�, 3 �green�, 5 �blue�, and 7 �red� re-
spectively. �b� First increasing from �=0 to 0.3 following the at-
tractor starting with the initial condition �1,0�. Second, decreasing �
from 0.5 to 0.3 and increasing � from 0.5 to 1, following the at-
tractors starting with two period-4 solutions, respectively.

FIG. 5. Coexistence of periodic motions. �a� Period 1 �thick
line�, 3 �dashed line�, 5 �dotted line�, and 7 �thin line�, respectively,
for �=1.0. �b� A pair of period-2 solutions for �=0.05. �c� and �d�
represent the pair of period 4 and the chaotic attractor for �=0.5
with the largest Lyapunov exponent 0.1065.

FIG. 6. �a� Chaotic attractor for �=0.1 with the largest
Lyapunov exponent 0.0812. �b� Chaotic saddle leading to period-2
solution for �=0.01. �c� Chaotic saddle leading to period-2 solution
for �=0.001. �d� Chaos for �=0 with the largest Lyapunov expo-
nent 0.0480.
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IV. CLOSING REMARKS

A smooth or discontinuous nonlinear oscillator has been
proposed. The nonlinearity can be smooth or discontinuous
depending on the value of the smoothness parameter �. A
mathematical model of the oscillator has been developed and
investigated. It has been found that the unperturbed smooth
system has a double-well characteristic which is similar to
the Duffing oscillator. The discontinuous system exhibits a
saddlelike singularity connecting two circles forming ho-
mocliniclike orbits. Under perturbation, for large �, the sys-
tem exhibits complex coexistence of periodic attractors and
also periodic solutions with a strange chaotic attractor which
disappears at ��0.1. Decreasing � further creates chaotic
transients around a chaotic saddle, which leads to periodic
orbits as time increases. This chaotic transient becomes a
chaotic attractor for �=0. The attractor can deform in shape
or bifurcate to a high-period periodic attractor depending on

the strength of damping, or can even become a chaotic sea
with islands of quasiperiodic trajectories for 	=0. It is also
interesting to compare the fingerlike topology of the chaotic
attractors found in this paper with that observed by Thomp-
son et al. in �25,26�. The latter arose in a linear oscillator
with impacts, which has apparent similarities with the
present model.

The presented oscillator is being actively studied by the
authors in two main directions. First, the peculiar properties
at the limit of �=0 are being analyzed in more detail to
better understand the bifurcation structures under varying
damping and external forcing. This research relates to the
studies of preloaded oscillators, e.g., �2,27�. The second pur-
sued direction is to develop analytical measures �e.g., con-
struction of the Melnikovian� to predict the border of chaos.
This research bears a significant analogy to the predictions
made for the Duffing oscillator; see, e.g., �28,29�.
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